Higher-order collinear interaction and magnetic excitation in the $5 f$ localized system $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 S1957
(http://iopscience.iop.org/0953-8984/15/28/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 19/05/2010 at 12:38

Please note that terms and conditions apply.

Higher-order collinear interaction and magnetic excitation in the $\mathbf{5 f}$ localized system $\mathbf{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$

N Metoki ${ }^{1,2,9}$, Y Koike ${ }^{1}$, Y Haga ${ }^{1}$, K Kaneko 1, S Araki ${ }^{1}$, K A McEwen ${ }^{3}$, M Kohgi ${ }^{4}$, $\mathbf{N A s o}^{5}$, G H Lander ${ }^{1,6}$, T Komatsubara 7, N Kimura 7, H Aoki ${ }^{7}$ and $\mathbf{Y} \overline{\mathbf{O}} \mathbf{n u k i}{ }^{1,8}$
${ }^{1}$ Advanced Science Research Centre, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan
${ }^{2}$ Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
${ }^{3}$ Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT, UK
${ }^{4}$ Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
${ }^{5}$ Neutron Scattering Laboratory, ISSP, University of Tokyo, Ibaraki 319-1106, Japan
${ }^{6}$ EC JRC, Institute for Transuranium Element, Postfach 2340, 76125 Karlsruhe, Germany
${ }^{7}$ Centre for Very Low Temperature Science, Tohoku University, Sendai 980-8545, Japan
${ }^{8}$ Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
E-mail: metoki@kotai3.tokai.jaeri.go.jp

Received 12 November 2002
Published 4 July 2003
Online at stacks.iop.org/JPhysCM/15/S1957

Abstract

The magnetic structure and excitation in a localized 5 f system $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ were studied by means of neutron scattering. Our neutron diffraction experiments on a single-domain sample uniquely determined a remarkable collinear structure due to higher-order exchange interaction. We discovered a new type of spinflop transition with collinear coupling. The localized nature of uranium 5 f electrons with a $5 f^{2} \Gamma_{5}$ ground state was clearly demonstrated by the observed crystalline electric field excitation. We observed beautiful ferromagnetic and antiferromagnetic spin-wave excitation over a whole Brillouin zone. Surprisingly, however, a clear low-energy quasi-elastic component was also observed around the antiferromagnetic zone centre. This low-energy quasielastic response is concluded to be the excitation of the quasi-particles due to hybridization between 5 f and conduction electrons. The observation of this localized and itinerant dual nature in magnetic excitation indicates the possibility of partial localization based on an itinerant and two localized 5 f electrons proposed theoretically.

1. Introduction

Actinide-based intermetallic compounds attract strong interest because of the variety of their magnetic and electronic properties. In particular, the recent great discoveries of

[^0]ferromagnetic superconductivity in UGe_{2} [1] and URhGe [2], and high-temperature heavyfermion superconductivity in PuCoGa_{5} [3] and its derivatives [4] have attracted much attention in the field of the strongly correlated electron systems. The 5 f electrons in most uranium-based intermetallic compounds are believed to show itinerant character due to the hybridization with conduction electrons. Very recently a microscopic description of heavy quasi-particles in U-based compounds has been proposed. It is based on the assumption that some of the 5 f states may be itinerant while the others remain localized. Within this scenario a recent band calculation for UPt_{3} and $\mathrm{UPd}_{2} \mathrm{Al}_{3}$ reproduces the dHvA frequencies and effective mass very well [5]. However, the existence of localized 5 f electrons in UPt_{3}, and even in $\mathrm{UPd}_{2} \mathrm{Al}_{3}$, remains controversial, because of the absence of the crystalline electric field (CEF) and J-multiplet excitations which are direct evidence for the localized character of 5 f electrons.

Apart from in UPt_{3}, partial localization of the 5 f state is in a general sense a possible and highly interesting scheme. In order to reveal the dual nature of U-based 5f-electron systems, we studied the magnetic structure and excitations in a localized 5 f intermetallic compound $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$. Up to now only a few uranium compounds have been reported to be localized 5f systems. Recently we found a new uranium intermetallic compound $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ [6]. The localized character was suggested by the Curie-Weiss behaviour in the magnetic susceptibility, as well as the CEF excitation $[7,8] . \mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ is the first example of a localized 5 f system with a magnetic ground state, $a \Gamma_{5}$ and $5 f^{2}$ configuration, while the antiferro-type quadrupolar ordering in UPd_{3} has been intensively studied by McEwen and co-workers [9]. It should be noted that these prototype compounds have the same $5 f^{2}$ configuration, with one 5 f electron remaining somewhere. It is also noteworthy that, so far, no U-based localized system with a $5 f^{3}$ configuration has been reported.

In this paper we review the remarkable collinear structure and a new type of spinflop transition due to the higher-order collinear interaction [10]. We observed beautiful ferromagnetic and antiferromagnetic spin-wave excitation over a whole Brillouin zone [11]. The quasi-elastic response is concluded to be the excitation of the quasi-particles, namely the itinerant part, due to hybridization between 5 f and conduction electrons. Our observation indicates a clear dual nature of magnetic excitation in the localized 5 f system $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$.

2. Experimental details

Neutron scattering experiments were carried out at the research reactor JRR-3 in Japan Atomic Energy Research Institute (JAERI). Elastic scattering was measured on the tripleaxis spectrometer TAS-2 $\left(E_{\mathrm{i}}=13.7 \mathrm{meV}\right)$. A tiny single crystal (0.5 mm thick and 5 mm in diameter) was mounted with the $[1,0,0]$ and $[0,1,1]$ axes in the horizontal scattering plane. A magnetic field was applied either along the vertical, $\boldsymbol{H}_{\perp} \|[0, \overline{1}, 1]$, or horizontal, $\boldsymbol{H}_{\|} \| \boldsymbol{Q}$, direction. The sample was cooled down to 0.2 K with liquid-He cryogen-free dilution refrigerator [12]. The vertical field was applied up to 10 T using a liquid-He cryogenfree superconducting magnet [13]. These liquid-He cryogen-free systems were developed by JAERI.

Neutron inelastic scattering spectra were measured with the use of TAS-1 at the final energy $E_{\mathrm{f}}=14.7 \mathrm{meV}$ and LTAS with $E_{\mathrm{f}}=3.5 \mathrm{meV}$. A large single crystal with total mass 10 g was cut into two pieces and mounted with the $[1,0,0]$ and $[0,1,1]$ axes in the horizontal scattering plane within the accuracy of 0.1°. The samples were cooled down to 100 mK with a Oxford Kelvinox dilution refrigerator.

Single-crystalline $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ was grown by the Czochralski pulling method under an Ar gas atmosphere using a tri-arc furnace. The detail of the sample preparation has been published elsewhere [7].

Figure 1. The crystal structure of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$.

3. Experimental results

The crystal structure of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ is shown schematically in figure 1. $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ crystallizes in an ordered derivative of the $\mathrm{Cr}_{23} \mathrm{C}_{6}$-type cubic structure with space group $F m \overline{3} m$. The crystal structure is very complicated, containing 116 atoms in a large unit cell with the lattice constant $12.175 \AA$. However, if we pay attention only to uranium atoms and ignore the other elements, the uranium lattice is rather simple. There are two different crystallographic sites for uranium atoms, 4 a and 8 c sites. Uranium atoms on 4 a sites have the face-centred-cubic (fcc) structure, while the 8 c sites form a simple cubic lattice with a half-unit of the crystallographic unit cell. The nearest-neighbour $\mathrm{U}-\mathrm{U}$ distance is $5.27 \AA$. This value is the interatomic distance between the 4 a and 8 c site. The nearest-neighbour distances within the 8 c and 4 a sublattices are 6.09 and $8.61 \AA$, respectively. Each uranium atom is surrounded by ligand Pd and Si atoms. This cage-like structure and the large uranium interatomic distances would be important for the localized character of this compound.

Figure 2. The $H-T$ magnetic phase diagram of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$.
(This figure is in colour only in the electronic version)

Figure 2 summarizes the $H-T$ phase diagram for the magnetic structures of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ [10]. These magnetic structures described here were uniquely determined by means of neutron diffraction for a single-domain sample under a magnetic field. There are three ordered phases. In the 'AF' phase, uranium spins on the 8c sites order in the G-type antiferromagnetic structure. Note that the uranium moments on 4 a sites remain paramagnetic. The magnetic moment is parallel to $\langle 100\rangle$. In the ' $\mathrm{AF}+\mathrm{FM}$ ' phase, the ferromagnetic ordering on the 4 a sites shows a collinear coupling with 8 c antiferromagnetic ordering, which enables us to get a single-domain sample under a weak external field. The 8 c spins exhibit a spin-flop transition for $H \sim 5 \mathrm{~T}$, and the 'SF' phase becomes stable for higher magnetic fields.

Heisenberg exchange interaction between the nearest-neighbour 4 a and 8 c sublattices is cancelled out, which is why the 4 a and 8 c spins order at different temperatures. The transition temperatures, $T_{\mathrm{C}}=2$ and $T_{\mathrm{N}}=19 \mathrm{~K}$, indicate the strength of the intra-site interactions. In the 'AF + FM' phase, we found that the antiferromagnetic moment follows the direction of the interpenetrating ferromagnetic moment, when the external field is applied. This is direct evidence for the collinear interaction between the 4 a and 8 c sites. Higher-order exchange and/or quadrupole interactions are considered as the candidates for providing this collinear coupling.

The 8c spins exhibit a spin flop for $H \sim 5 \mathrm{~T}$. This spin-flop transition is unusual, because (i) it is not expected with cubic anisotropy and (ii) a spin flop of the 8c sites is observed when both 4 a and 8 c spins are ordered. We concluded that it is a new type of spin-flop transition with collinear interaction which induces uniaxial anisotropy on the 8 c sites.

Figure 3. The field dependence of the ferromagnetic and antiferromagnetic components on 8 c sites $\mu_{8 \mathrm{c}}^{\mathrm{FM}}$ and $\mu_{8 \mathrm{c}}^{\mathrm{AFM}}$, respectively, and the ferromagnetic moment on 4 a sites, $\mu_{4 \mathrm{a}}$, for $H \|[1,1,0]$.

The field $(H \|[1,1,0])$ dependence of the magnetic moment obtained by our neutron diffraction experiments is shown in figure 3. The magnetic moment at 8 c sites, $\left(\left[\mu_{8 \mathrm{c}}^{\mathrm{FM}}\right]^{2}+\right.$ $\left.\left[\mu_{8 \mathrm{c}}^{\mathrm{AFM}}\right]^{2}\right)^{1 / 2} \simeq 1.8 \mu_{\mathrm{B}} / \mathrm{U}$ is in good agreement with the $5 \mathrm{f}^{2} \Gamma_{5}$ ground state $\left(2 \mu_{\mathrm{B}}\right)$. The ferromagnetic component of the 8c sites exhibits a steep increase in the vicinity of the spin-flop field. $\mu_{4 \mathrm{a}}$ is strongly suppressed for small external field but recovers in value in the Γ_{5} ground state. The total moment per uranium atom $\left(\mu_{4 \mathrm{a}}+2 \mu_{8 \mathrm{c}}^{\mathrm{FM}}\right) / 3$ obtained by the neutron diffraction study is in perfect agreement with the result of a recent magnetization measurement [14].

The strong suppression of the 4 a ferromagnetic moment could be explained by the intersite coupling. Below T_{C}, a constant molecular field on the 8 c sites is expected from the 4 a sites. This molecular field might perturb the antiferromagnetic structure of 8 c spins. Therefore, the 4a ferromagnetic ordering could be suppressed and so not disturb the 8 c antiferromagnetic ordering. Note that the intra-site interaction in 8 c sites is much stronger than that in 4 a sites due to the large difference in $\mathrm{U}-\mathrm{U}$ distance. In this situation, the magnetic moment would recover to the saturation value with field application.

The CEF excitation in $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ was observed by Tateiwa et al [7] for the first time. Kuwahara et al [8] observed the CEF excitation with the HET spectrometer at ISIS. They revealed that the observed CEF excitation spectra can be explained in terms of the $5 f^{2}$ configuration with a Γ_{5} ground state both for 4 a and 8 c sites. The result for the CEF excitation is consistent with the specific heat and the softening of the elastic constant c_{44} around the magnetic ordering temperature.

The spin-wave excitation of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ was reported for the first time by Aso et al [11]. $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ exhibits very beautiful antiferromagnetic and ferromagnetic spin-wave excitations due to 8 c and 4 a sites, respectively, over a whole Brillouin zone. The existence of the clear spin-wave excitation in $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ is rather 'unusual' for uranium intermetallic compounds. In most U-based intermetallic compounds magnetic excitations are often very weak, broad and

Figure 4. The high-resolution neutron inelastic scattering spectra of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$.
spread out in $Q-\omega$ space. Therefore the very sharp spin-wave excitation is also attributed to the localized character of $5 f$ electrons in $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$.

Figure 4 shows high-resolution neutron inelastic scattering profiles of $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ around the zone centre $(1,1,1)$ measured at 5 K . The inelastic peak at $\Delta E=1.5 \mathrm{meV}$ for $Q=(1.1,1.1,1.1)$ is the antiferromagnetic spin-wave excitation. The spin-wave excitation energy decreases with Q approaching the $(1,1,1)$ zone centre. We expect the gap about 1 meV from extrapolation of the excitation energy. Surprisingly, however, it is clearly seen that a weak quasi-elastic response is observed in a very narrow Q-region around the zone centre. The two-component scattering profile around the antiferromagnetic zone centre is very similar to the low-energy magnetic response in the heavy-fermion superconductor $\mathrm{UPd}_{2} \mathrm{Al}_{3}$. In $\mathrm{UPd}_{2} \mathrm{Al}_{3}$, a very broad spin-wave excitation and a quasi-elastic component were observed around the $(0,0,1 / 2)$ magnetic zone centre [15]. The quasi-elastic component showed a superconducting gap in the superconducting state [16]; hence this low-energy response was concluded to be the magnetic excitation due to the heavy quasi-particles in $\operatorname{UPd}_{2} \mathrm{Al}_{3}$ [17]. A similar low-energy response has been observed in UPt_{3} [18] and UGa_{3} [19]. Therefore the existence of the quasi-elastic component in $\mathrm{U}_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ involves there being quasi-particles even in this localized system.

At present we have no idea how to explain the existence of the dual natures of the magnetic excitation-namely: the clear localized nature of the CEF and spin-wave excitation; and the itinerant nature of the quasi-elastic low-energy response due to quasi-particles. It is significant that the localized character with the $5 f^{2} \Gamma_{5}$ ground state in $U_{3} \mathrm{Pd}_{20} \mathrm{Si}_{6}$ is well established experimentally; it coexists with the quasi-elastic component. A possible explanation might be a partial localization based on the coexistence of the localized and itinerant parts of the 5 f electrons. Further theoretical and experimental studies are necessary in order to clarify the behaviour of the 5 f electrons in uranium-based intermetallic compounds.

In conclusion, we have discovered remarkable collinear magnetic ordering and a new type of spin-flop transition due to the higher-order collinear interaction. We observed a clear localized and itinerant dual nature of the magnetic excitation, indicative of partial localization based on an itinerant and two localized $5 f\left(\Gamma_{5}\right)$ electrons.

Acknowledgments

The authors would like to thank N Bernhoeft for stimulating discussions. This work was financially supported by a Grant-in-Aid for COE Research (10CE2004) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Saxena S S, Agarwal P, Ahilan K, Grosche F M, Haselwimmer R K W, Steiner M J, Pugh E, Walker I R, Julian S R, Monthoux P, Lonzarich G G, Huxley A, Sheikin I, Braithwaite D and Flouquet J 2000 Nature 406587
[2] Aoki D, Huxley A, Ressouche E, Braithwaite D, Flouquet J, Brison J P, Lhotel E and Paulsen C 2001 Nature 413613
[3] Sarrao J L, Morales L A, Thompson J D, Scott B L, Stewart G R, Wastin F, Rebizant J, Boulet P, Colineau E and Lander G H 2002 Nature 420297
[4] Wastin F 2003 J. Phys.: Condens. Matter 15 S2279
[5] Zwicknagl G, Yaresko A N and Fulde P 2002 Phys. Rev. B 65081103
[6] Tateiwa N, Kimura N, Aoki H and Komatsubara T 2000 J. Phys. Soc. Japan 691517
[7] Tateiwa N, Metoki N, Koike Y, Oikawa K, Kimura N, Komatsubara T and Aoki H 2001 J. Phys. Soc. Japan 70 2425
[8] Kuwahara K, Kohgi M, Tateiwa N, Bewley R I, Allen J, McEwen K A, Kimura N, Aoki H and Komatsubara T 2002 Physica B 312/313 899
[9] For example, the paper of McEwen K A 2003 J. Phys.: Condens. Matter 15 S1923 and references therein
[10] Koike Y, Metoki N, Haga Y, McEwen K A, Kohgi M, Yamamoto R, Aso N, Tateiwa N, Komatsubara T, Kimura N and Aoki H 2002 Phys. Rev. Lett. 89077202
[11] Aso N, Metoki N, Kohgi M, McEwen K A, Koike Y, Haga Y, Tateiwa N, Kimura N, Aoki H, Komatsubara T and Morii Y 2002 Physica B 312/313 897
[12] Koike Y, Morii Y, Igarashi T, Kubota M, Hiresaki Y and Tanida K 1999 Cryogenics B 39579
[13] Katano S, Minakawa N, Metoki N, Osakabe T, Suzuki J, Koike Y and Ishii Y 2002 Appl. Phys. A 74 S270
[14] Tateiwa N, Sakon T, Motokawa M, Kimura N, Aoki H and Komatsubara T 2001 J. Phys. Soc. Japan 701853
[15] Sato N, Aso N, Lander G H, Roessli B, Komatsubara T and Endoh Y 1997 J. Phys. Soc. Japan 661884
[16] Metoki N, Haga Y, Koike Y and Ōnuki Y 1998 Phys. Rev. Lett. 805417
[17] Bernhoeft N R, Sato N, Roessli B, Aso N, Hiess A, Lander G H, Endoh Y and Komatsubara T 1998 Phys. Rev. Lett. 814244
[18] Bernhoeft N R and Lonzarich G C 1995 J. Phys.: Condens. Matter 77325
[19] Coad S, Hiess A, Paolasini L, Bernhoeft N, Dervenagas P, Kaczorowski A, Czopnik A, Troć R and Lander G H 2000 Physica B 281/282 200

[^0]: 9 Author to whom any correspondence should be addressed.

